Monday, March 31, 2014

Remainder of power numbers on division

Remainder of power numbers on division
The remainder of a number n to the power of p when divided by a divisor d is cyclically varying not only for p but also for n . For example when d = 7 ,the cyclic variation of the remainder is same for np  and
(n+ 7x)p
Remainder of np when divided by 7
n/p         0              1              2              3              4              5              6              7              8              9              10
1              1              1              1              1              1              1              1              1              1              1              1
2              1              2              4              1              2              4              1              2              4              1              2             
3              1              3              2              6              4              5              1              3              2              6              4
4              1              4              2              1              4              2              1              4              2              1              4
5              1              5              4              6              2              3              1              5              4              6              2
6              1              6              1              6              1              6              1              6              1              6              1
7              1              0              0              0              0              0              0              0              0              0              0
8              1              1              1              1              1              1              1              1              1              1              1             
9              1              2              4              1              2              4              1              2              4              1              2
10           1              3              2              6              4              5              1              3              2              6              4

It is found that the remainder of (1+7x)p when divided by 7 is 1,for all values of x and p..The remainder of  n6 when divided by 7  is 1 for all values of n except n = 7x. It is 0 for n = 7x

Saturday, March 29, 2014

power numbers and its divisibility

Power numbers and its divisibility
When a seventh power of a number ‘a’ is divided by 7, the remainder will be equal to that number itself when a < 7 and (a-7n) when a > 6 where n is the  whole number of 7’s in ‘a’ . e.g.,
17 = 1 = 7(0) + 1
27 = 128 = 7(18) + 2
37 = 2187 = 7(312) + 3
47 = 16384 = 7(2340) + 4
57 = 78125 = 7(11160) + 5
67 = 279936 = 7(39990) + 6
When a = 7 or > 7, a= (7n+d)
a7 = (7n+d)7 and the remainder is determined by d7 / 7 and it is equal to d itself.
77 = 823543 = 7 (117648) + 7
                      = 7 (117649) + 0
87 = 2097152 = 7 (299593) + 8
                        = 7 (299594) + 1
 When a fourth power of a number ‘a’ is divided by (a+1) ,the remainder is 1 for all values  of a.
a=1; a4 = 1 = 2(0) + 1
a=2; a4 = 16 = 3(5) + 1
a=3; a4 = 81 = 4(20) + 1
a=4; a4 = 256= 5(51) + 1
a=5; a4 = 625 = 6(104) + 1
a=6; a4 = 1296 = 7(185) + 1
a=7; a4 = 2401 = 8(300) + 1
a=8; a4 = 4096 = 9(455) +1

The quotient is equal to a3 – a2 + a - 1

Wednesday, March 26, 2014

divisibility of cube numbers (cont.,)

Divisibility of cube numbers (cont.,)
When a3 is divided by (a+4),,the remainder will be 4(a-12),that is for all ‘a’ which are in multiples of 12 ,the remainder will be zero.
The general form correlating a3, the divisor (a+4),the quotient and the remainder is
  a3 = [8+ (a-2)2 ] (a+4) + 4(a-12)
If the  divisor is (a+5),  it becomes,
a3 = [14 + (a-2)(a-3)] (a+5) + 5(a-20)
For the divisor (a+6),
a3 = [21 + (a-3)2 ] (a+6) + 6(a-30)
for (a+7),

a3 = [ 30 + (a-3)(a-4)](a+7) + 7(a-42)

Tuesday, March 25, 2014

divisibility of cube numbers (cont.,)

Divisibility of cube numbers (cont.,)
When a3 is divided by 4 ,for all even numbers the remainder is zero where as for odd numbers it is 1 for a in the form of (4n+1) and 3 for (4n-1).
When a3 is divided by (a+4)
1= 5(9) -44
8= 6(8) – 40
27 = 7(9) – 36
64= 8(12) – 32
125 = 9(17) – 28
216 = 10(24) – 24
343= 11(33) – 20
512 = 12(44) – 16
729 = 13(57)- 12
1000 = 14(72) – 8

 In  general it takes a form

a3 = [8+(a-2)2](a+4) + 4(a-12)

Sunday, March 23, 2014

divisibility of cube numbers (cont.,)

Divisibility of cube numbers (cont.,)
When a3  is divided by 3, the remainder will not only be same as the remainder for a but also it is periodically varying as 1,2,0.
When a3 is divided by (a+3)
a=1, 4(4) – 15
a=2,5(4) – 12
a=3, 6(6) - 9
a=4,7(10) - 6
a=5,8(16) - 3
a=6,9(24) + 0
a=7,10(34) + 3
a=8,11(46) + 6
a=9,12(60) + 9
                                                                            a-2
In general ,the quotient is in the form [4 +  Σ 2n ] and the remainder is 3(a-6)
                                                                                     0        
a-2
 Σ 2n  = (a-1)(a-2)
 0

It shows that a3 = [4+(a-1)(a-2)](a+3) - 3(a-6)

divisibility of cubes

Divisibility of cubes
We know that a3 – a is equal to a product of three successive numbers (a-1),a,and (a+1).
a3 – a = (a-1)a(a+1). Since the product of any three successive numbers is invariably divisible by 6,
(a-1)a(a+1) = 6n
i.e., a3 – a = 6n  or a3 = a+6n or a2 = 1 + [6n/a] i.e., 6n is divisible by a
It is noted that there is some kin d of regularity in the quotient and the remainder when a3 is divided by (a+1),(a+2),(a+3)…..
When a cube a3 is divided by (a+1) or (a-1) ,the quotient will be a(a-1) or a(a+1) with remainder a.
When a3 is divided by (a+2)
a=1 ,2(3) – 5
a=2, 3(4) – 4
a=3, 6(5) -3
a=4,11(6) – 2
a=5,18(7) – 1
a=6,27(8) + 0
a=7, 38(9) + 1
a=8,  51(10) +2
a=9, 66(11) +3
In general, it is in the form,
               a-2
a3 = [ 2+ Σ (2n+1)](a+2) + (a-6)
           0

But               n-2
Σ (2n+1)] is a square number.It is equal to square of a number equal tp the
0
  number of odd numbers added together.i.e, (n-1)2 .

a3 = [2+(a-1)2](a+2) + (a-6)

It shows that when a3 is divded by (a+2) , the quotient will be [2+(a-1)2] and the remainder will be (a-6)