Saturday, May 13, 2023

 Improve your mathematical skill

(1) {3,4=5]2 is the smallest Pythagoras triple. What is the next higher Pythagoras triple having same ending digits ?

 (2) Find a solution for three successive odd numbers whose sum gives a cube?

 (3) 9 +9 = 18  ; 9 x9 =  81 Here the sum and the product of two numbers give results where the digits are revered. Can you find out more examples?

(4) x5 + x4 + x3 + x2 + x + 1= 0. Find the value of x.

 (5) xyz + xyz + xyz = zzz or xyz + xyz + xyz = yyy or xyz + xyz + xyz = www, where w,x,y,z take any digit from 1 to 9. Find allowed values of w,x,y.z.

 (6) (3+2) / (3+1) = (33 + 23) / (33 + 13) and (6+4) / (6+2) = (63 + 43) / (63 + 23)  Find an another example.

(7) Under what condition the relation (a+b)/(c+d) = (a2 – b2)/(c2 – d2) is true. Give numerical example

 (8) Prove that sum and product of two numbers cannot be equal to sum and product of two other numbers simultaneously.

(9) If x2 + 1/x2 = 34 . Find the value of x5  + 1/x5

 (10) Find a set of Pythagoras triples with given endings (8.5 and 7)

 Answers

(1) [13,84=85]2

        13 is prime;132 = (c-b)(c+b) ,if c-b=1 and c+b = 169 ,  c = 85 and b = 84  

 (2) (2n-1) + (2n+1) + (2n+3) = 6n +3 = 3 (2n+1). To give odd cube (2n+1) must be odd  or (2n+1) = 9, 243 ------9 (2x-1)3  . It gives

7+9+11=27 = 3x3x3 = 33  

241 + 243 + 245 = 729 = 9x9x9 = 93

(3) Let m and n be the two numbers satisfying the required condition. m+ n = 10 x + y and mn = 10y + x where x, y are any single digit number.                                                                                        m = 10x + y – n  = (10y +x )/n                                                                                                            which gives n2  = x(10n -1)- y(10-n)                                                                                                       To make n to be positive  x(10n-1)  > y(10-n)                                                                                        n=1;  1 = 9(x-y) , there is now whole number solution                                                                                         n = 2; 4 =  19x – 8y, which gives  x =4 and y =9  ,or m = 47                                                                         2 + 47 = 49;  2 x 47 = 94                                                                                                                n=3 ; 9 = 29x – 7y, which provides x =2. Y =7 or m = 24                                                                                3 + 24 = 27  ; 3 x 24 = 72                                                                                                                    For higher values of n , n = 4,5,6… ., there is no such pair of numbers .                                    If the sum and product are three digit numbers, then  m+n = 100x + 10 y + z and mn = 100z + 10y +x                                                                                                                                                                   m = (100z +10y +x)/n = 110x + 10y +z – n                                                                                                            n2 = x(100n -1) +10y (n-1) – z(100-n)                                                                                                  when n = 2 ; 4 = 199x + 10y – 98z                                                                                                           when x = 4 , z= 9  we have 786 + 19y – 882  which gives y = 9 0r m – 497                                   2 + 497 = 499 ; 2 x 497 = 0=994  This is true for any number of 9 in between 4 and 7.                              2 + 4997 = 4999 ; 2 x 4997 = 9994                                                                                                           2+49997 = 40000 ; 2 x 49997 = 99994

(4) The given expression can be written as x (x4 + x3 + x2 + x + 1) = -1. There are two possibilities.

x = 1 and (x4 + x3 + x2 + x + 1) = -1   ;   x = -1 and (x4 + x3 + x2 + x + 1) = 1

The former solution is not valid as (x4 + x3 + x2 + x + 1) ≠ -1 if x =1. But x = -1, satisfies both the conditions. The solution is same to all problems where the exponents of x begin from 0  to (2n-1)

x3 + x2 + x + 1 = 0                                                                                                                                       x7 + x6 + x5 + x4 + x3 + x2 + x +1 =0

(5) xyz + xyz + xyz = zzz

3 (100 x + 10 y+ z) = 100 z + 10 z + z = 111 z

      100x +10y + z = 37 z -à  100x +10y = 36 z à 50 x + 5 y = 18 z

The digital roots must be same in both sides. Whatever may be the digital root of z, because of its coefficient 36 , 36z will have a digital root 9. Hence the digital root of x +y must be 9.

One possible solution is z =5 , x= 1 and y =8)185, which gives 185 x 3 = 555

xyz + xyz + xyz = yyy

3 ( 100 x + 10 y+ z) = 100 y + 10 y + y = 111 y

     100 x + 10y + z = 37 y --à 100x + z = 27 y

The digital roots must be same in both sides. Whatever may be the digital root of y, because of its coefficient 27,  27 y will have a digital root 9. Hence the digital root of x +z must be 9

One possible solution is  y =4 ,x=1 , z= 8 which gives 148 x 3 = 444

( x≠w, as it gives forbidden solutions)

If the identical digit (w) in the sum is different from the digits of the adder (x,y,z)

3(100x + 10y +z) = 100 w + 10w + w = 111 w

(100x + 10y +z) = 37 w

37 x 3n gives all identical digits. Two solutions are available\

259 x 3 = 777 and 296 x 3 = 888

 (6) We know a3 + b3 = (a+b)(a2 – ab + b2 ) and a3 + c3 = (a+c)(a2 – ac + c2 )

If a2 – ab + b2 and a2 – ac + c2 are equal  (a+b)/ (a+c) =( a3 + b3 )/ (a3 + c3 )

The condition demands a2 – ab + b2 = a2 – ac + c2

 a(c-b) = c2 – b2 = (c-b) (c+b)  or a = c+b or c = a—bThe general form of this relation is

(a +b)/ [a +(a-b)] = (a3 + b3 )/ a3 + (a-b)3 . When a = 7 , b =5, we have  (7+5)/ (7+ 2) = (73+53)/ (73+ 23)

(7) (a+b)/(c+d) = (a2 – b2)/(c2 – d2) = (a+b)(a-b) / (c+d)(c-d) .To make them to be equal a-b = c-d is the required condition. For example, a=7,b=5 , a-b = 2, c = 3 , d = 1 and c-d =2, we have (7 +5)/(3+1) =  12/4 = (72 – 52) / (32  - 12 )  = 24/8

(8) Let us suppose  a + b = c+d and ab = cd. Squaring the former relation a2 + b2 + 2ab = c2 + d2 + 2cd and (a + b)3 = (c+d)3 -à a3 + b3 + 3ab ( a+b) = c3 +d3 + 3cd (c+d), Since ab = cd,  a2 + b2 = c2 + d2 and a3 + b3 = c3 + d3

If a + b = c + d, the difference between one pair (a-c) must be equal to the difference in the other pair (d-b) That is if  c = a +x , then d = b – x. Substitute these values in the relation ab = cd = (a+x)(b-x) = ab + x(b-a) – x2  which gives a condition x = b-a. Substituting this value in c = a + x = a + b – a = b and d = b – x = b – b + a or d = b. The condition demands that two numbers must be same in both sides of the relation. It proves that if sum of two numbers equals to sum of two other numbers, then their product will not be equal, or if the product of two numbers equals to product of two other numbers, then their sum will not be equal.

(9) (x + 1/x)2 = x2 + 1/x2 + 2 = 34 + 2 = 36                                                                                             Or x + 1/x = ± 6. With positive root, it gives a quadratic equation x2 – 6c + 1 = 0. Its solution is x = 3 ±2√ 2                                                                                                                                                         (x + 1/x)3 = x3 + 1/x3 + 3(x + 1/x)                                                                                                           63 = 216 = x3 + 1/x3  + 18 or  x3 + 1/x3  = 216 – 18 = 198                                                                                      (x2 + 1/x2)2 = (34)2 = 1156 = x4 + 1/x4 + 2 which gives x4 + 1/x4  = 1154                                                  (x4 + 1/x4)(x + 1/x) = 1154 x 6 =6924 = (x5 + 1/x5)  + (x3 + 1/x3) which gives                                               (x5 + 1/x5) = 6924 -   (x3 + 1/x3) = 6924 – 198 = 6726

This can also be derived from (x + 1/x)5                                                                                                                                  (x + 1/x)5  =65 = 7776 = (x5 + 1/x5) + 5 (x3 + 1/x3) + 10 (x + 1/x)                                                      (x5 + 1/x5) = 7776 – 5(198) – 10(6) =6726                                                                                   Extending this idea (x6 + 1/x6)  = (x3 + 1/x3)2 – 2 = 1982 -2 = 39202

(10) The general form of the Pythagoras triple is (10n +8)2 + (10x +15)2 = (10x + 17)2 which gives a condition 5n2 + 8n = 2x.For all even n ,x becomes a positive number. When n = 2 , x = 18, which gives [28,195 = 197]2 and when n = 4 , x = 56 which gives [48,575=577]2

The general form of this set is (10n +8)2 + (25n2 +40n +15)2 = (25n2 +40n + 17)2

Friday, May 12, 2023

problem solving

 As a mixed power relation show that  (x)5 + (x)5 = 2(x)5 can be expressed  as a power with exponent other thn 5 or multiples of 5

Let x = 2n km , then  (2n km)5 + (2n km)5 = 2(2n km)5 = 25n+1 k5m

when n = 1 ,m=2 ; (2 k2)5 + (2 k2)5 = 2(2 k2)5 = (23 k5)2

Keeping n same and m is changed

when n = 1 ,m=4 ; (2 k4)5 + (2 k4)5 = 2(2 k4)5 = (23 k10)2

Keeping m is same and n is changed

when n = 3 ,m=2 ; (23 k2)5 + (23 k2)5 = 2(23 k2)5 = (28 k5)2

when n=1 m=3 ; (2 k3)5 + (2 k3)5 = 2(2 k3)5 = (22 k5)3

when n=3 m=4 ; (23 k4)5 + (23 k4)5 = 2(23 k4)5 = (24 k5)4

when n=1 m=6 ; (2 k6)5 + (2 k6)5 = 2(2 k6)5 = (2 k5)6

In 25n+1 k5m the exponents 5n+1 cannot be expressed as a multiple of 5. Hence sum of two power number with exponent 5 cannot be expressed as a number with same exponent. This is in accordance with FLT.