Fun with Numbers
Equal sums of fourth powers
Sum of two fourth powers of whole number can be made to equal with two other fourth powers of whole numbers.
a4 + b4 = c4 + d4 where a,b,c and d are whole numbers.
The fourth power of a number is always equal to some multiples of 12 plus a square number less than 10.
14 = 1 = 12(0) + 1
24 = 16 = 12(1) + 4
34 = 81 = 12(6) + 9
44 = 256 = 12(21) + 4
54 = 625 = 12 (52) + 1
64 = 1296 = 12(108) + 0
74 = 2401 = 12(200) + 1
84 = 4096 = 12 (341) +4
94 = 6561 = 12(546) + 9
104 = 10000 = 12(83) + 4
114 = 14641 = 12(1220) + 1
124 = 20736 = 12(1728) + 0
Euler gave the smallest possible solution for the equal sums of two fourth powers.
594 + 1584 = 1334 + 1344 ; [59,158]4 = [133,134]4
The other solutions pointed out by him are
29034 + 122314 = 102034 + 103814 ; [ 2903,12231]4 = [10203,10381]4
5556174 + 22194494 = 15847494 + 20612834 ; [555617,2219449]4 = [1584749,2061283]4
There are infinite number of solutions.Some of them are given here.
[76,1203]4 = [653,1176]4
[7,239]4 = [157,27]4
[193,292]4 = [256,257]4
[529,17332]4 = [6673,17236]4
[2338,3351]4 = [1623,3494]4
[6481,32187]4 = [23109,29812]4
{2513,40540]4 = [11888,40465]4
[7805,174484]4 = [125516,161405]4
[15322,89345]4 = [59678,84545]4
[20733,287394]4 = [67429,287178]4
[31238,419909]4 = [81659,419762]4
[31494,53935]4 = [35710,52881]4
[44422,63669]4 = [30837,66386]4
[155713,2129096]4 =[352321,2128712]4
[520640,691859]4 = [232484,739885]4
[629624,9822967]4 = [1112777,9822604]4
[170627,2420163]4 = [347774,2420406]4
[680101,10098310]4 = [1280101,10097710]4
[108201,480032]4 = [345588,444311]4
[3197510,11577973]4 = [8866315,10443598]4
[16305012,21173779]4 =[261008,22830381]4
[9052984,12912057]4 = [3013151,13621832]4
[1959622,2946291]4 = [1965454,2944563]4
[4329381,121829760]4 = [54401256,15567465]4