Monday, September 5, 2016

Mixed power relations-4

Mixed power relations-4
Another associated property of the relation a+ b2 + c= 2 d is  d+ xy = (x+y)2 = c2
12 + 12 + 13 = 2 x 157 ; 157 + 1x12 = 169 = 132
22 + 11+ 13= 2 x 147 ; 147 + 2x11 = 169 = 132
32 + 10+ 13= 2 x 139 ; 139 + 3 x 10 = 169 = 132
4+ 92  + 13= 2 x 133 ; 133 + 4x9 = 169 = 132
52  + 82  + 13= 2 x129 ; 129 + 5 x8 = 169 = 132
62  + 7 + 132  = 2 x127 ; 127 + 6x7 = 169 = 13 

Mixed power relations-3

Mixed power relations -3
 Sum of three fourth powers where  the greatest number is the sum of the  two other numbers is always associated with a square .
a + b4  + c = 2 d2   where a + b = c
If d is a square number (d = e2) it can also be expressed as a + b4  + c = 2 e4. This is exemplified with a typical example
1+ 7+  8 = 6498 = 2 x 572
2 + 6 + 8= 5408 = 2 x 52= 2x 13 
3+ 54 + 8= 4802 = 2 x 49 = 2 x 74
4 + 44  + 8= 4608 = 2 x 48= 2 x 122
 Some other examples are
74   8+ 15 = 2 x 134
5+ 16+ 21= 2 x 192
94 + 15+ 24= 2 x 212
11 + 24+ 35= 2 x 312
14+ 16+ 30= 2 x 262
21+ 30+ 56= 2 x 494


Another interesting property of this relation a + b4  + c = 2 d2   where a + b = c  is 
a+ b2 + c= 2 d
1+ 72  + 8= 114 = 2 x 57
22  + 62  + 82  =  2 x 52
It gives.
2(a + b4  + c)  = (2d)2  = (a+ b2 + c2)2



Sunday, September 4, 2016

Mixed power relations-2

Mixed power relations-2
The sum of four different power of any successive four numbers has shown yet another regularity in its structure.
+  2 + 33  + 4 =   288   =   3 x 4x 6
2 +  32  + 43  + 54  =   700   =   4 x 5 x 7
3  + 42  +  53 +  64  =  1440 =  5 x 6 x 8
4  +  52  + 63  + 74  =  2646 =  6 x 7 x 9 
5  +  62  + 73  + 84  =   4480 =  7 x  8x  10 
In general this can  be expressed as
(x-3) + (x-2)2  + (x- 1)  + x4  = (x-1) x2  (x+2)

Mixed power relation-1

Mixed power relations-1
It is interesting to note the rhythmic feature in   the following  numeral  relations.
1 + 22  + 33  =  32 = 2  x  42
2 + 32  + 43  = 75 =  3 x 5 2
3 + 42 + 53 = 144 = 4 x 61
4 + 52 + 63  = 245 = 5 x 72
5 + 62 + 7= 384 = 6 x 82
 In general it can be written as.

X  + (x+1)2  + (x+2)3 = (x+1) (x+3)2

Thursday, September 1, 2016




Fun with Numbers
Equal sums of fourth  powers 
Sum of two fourth powers  of whole number  can be made to equal with two other fourth powers of whole numbers.  
  a4  + b = c + d4  where a,b,c and d are whole numbers.
The fourth power of a number is always equal to some multiples of 12 plus  a square number less than 10.
14   = 1 =   12(0) + 1
2  =  16 =  12(1) +  4
3  = 81 =  12(6) + 9
44  = 256 = 12(21) + 4
5= 625 = 12 (52) + 1
6  = 1296 = 12(108) + 0 
7 = 2401 = 12(200) + 1
8 = 4096 = 12 (341) +4
94   = 6561 = 12(546) + 9
104  = 10000 = 12(83) + 4
11 = 14641 = 12(1220) + 1
12 = 20736 = 12(1728) + 0
Euler gave the smallest possible solution for the equal sums  of two fourth powers.
594  + 158 = 1334   + 1344 ; [59,158] = [133,134]4
The other solutions pointed out by him are
2903+ 12231 = 10203+ 103814 ; [ 2903,12231] = [10203,10381]4
555617+ 2219449= 1584749+ 20612834 ; [555617,2219449]= [1584749,2061283]4
There are infinite number of solutions.Some of them are given here.
[76,1203] = [653,1176]4
[7,239]= [157,27]4
[193,292]= [256,257]4
[529,17332]4 = [6673,17236]4
[2338,3351]= [1623,3494]4
[6481,32187]= [23109,29812]4
{2513,40540]= [11888,40465]4
[7805,174484]= [125516,161405]4
[15322,89345]= [59678,84545]4
[20733,287394]= [67429,287178]4
[31238,419909]= [81659,419762]4
[31494,53935]= [35710,52881]4
[44422,63669]= [30837,66386]4
[155713,2129096]4 =[352321,2128712]4
[520640,691859] = [232484,739885]4
[629624,9822967]= [1112777,9822604]4
[170627,2420163]= [347774,2420406]4
[680101,10098310]= [1280101,10097710]4
[108201,480032]= [345588,444311]4
[3197510,11577973]= [8866315,10443598]4
[16305012,21173779]=[261008,22830381]4
[9052984,12912057]4 = [3013151,13621832]4
[1959622,2946291]= [1965454,2944563]4
[4329381,121829760]= [54401256,15567465]4

Wednesday, August 31, 2016

A sum of three squares can be made to be a square. e.g.,
12 + 22 + 22  = 32
22 + 32 + 62 = 72
32 + 42 + 122  = 132
42 + 52 + 202 = 212
52 + 62 + 302  = 312
62 + 72 + 422 = 432
In general  (1+n)2 + (2+n)2 + (1+n)2(2+n)2 = [(n+1)(n+2) +1]2
It is found that (1+n)4 + (2+n)4 + (1+n)2(2+n)4 is divisible by (n+1)(n+2) + 1
14 + 24 + 24  = 33 = 3 x 11
24  + 34 + 64 = 1393 = 7 x 199
34  + 44 + 124 = 21073 = 13(1621)
44 + 54 + 204 = 160881 = 21(7661)


Sunday, January 17, 2016

Fun With Numbers

Fun With Numbers
Irreducible relations with equal sum of two squares can be generated from the following general expression
(P02P04 + P01P03)2  + (P01P04  –  P02P03)2  =  (P02P04  --  P01P03)2  + (P01P04  +  P02P03)2
Where P01,P02,P03,P04 are any four prime numbers. Compound numbers may also be taken, but sometimes it gives reducible set.
Interchange of any pair of prime numbers will not affect the balanced state of the relation. The equality is still preserved when all the prime numbers are expressed with same power
(P022P042 + P012P032)2 + (P012P042 – P022P032)2 = (P022P042 - P012P032)2 + (P012P042 + P022P032)2
(P02nP04n + P01n P03n)2 + ( P01nP04n  -- P02nP03n)2 = (P02nP04n - P01n P03n)2 + ( P01nP04n  + P02nP03n)2
When P01 = 1,P02= 2,P03= 3,P04=5; 132 + 11 = 72 + 112
            P01 = 3,P02= 2,P03= 1,P04=5; 132 + 132 = 72 + 172
                P01 = 3,P02= 1,P03= 5,P04=2 ; 172 + 12 = 132 + 112
While the relation with squares of prime numbers gives,
When P01 = 1,P02= 2,P03= 3,P04=5;  1092 + 112 = 912 + 612
            P01 = 3,P02= 2,P03= 1,P04=5; 1092 + 2212 = 912 + 2292

           P01 = 3,P02= 1,P03= 5,P04=2 ;2292 + 112 = 2212 + 612