Monday, March 26, 2018

Beal's conjecture


Link between  Pythagoras’  and  Beal’s  equation
It is found that there is a definite correspondence between the Pythagoras’  equation and Beal’s equation .
Let a2 + b2 = c2   be a known Pythagoras’ equation. With simple mathematical manipulation, it can be converted  into a  multi-power relation  px  + qy  = rz  which reveals  the basic characteristics of Beal’s conjecture. It states that if p,q,r,x,y and z are positive integers with (x,y,z) > 2 then p,q,and r have a common prime factor.
The conversion of a Pythagoras’ equation into a Beal’s equation can be done with fundamentals of Algebra . It is exemplified as follows.
a2 + b2 = c2  à  1 + (b2/a2) = (c2/a2)
Multiply by pn à pn  + pn (b2/a2) = pn(c2/a2)
If b2/a2 = qn then c2/a2 = qn  + 1 . If p = qn  + 1 we get multi-power relation with exponents [n,n,n+1]
(qn +1)n  + [q(qn + 1)]n  = (qn + 1)n+1
n=2, q =2 gives  52 + 102  = 53
n=3,q=2 gives  93  + 183  = 94
n=3 , q=3 gives  283  + 843 = 284
if b2/a2  = qn-m/p then c2/a2 = [ 1 + qn-m/p]
pn  + (pq)n-1    = pn-1 [p + q n-1] = (pr)n-1  where p = rn-1 – qn-1, we get multi-power relation with exponents [n,n-1,n-1]
(rn-1 – qn-1 )n  +  [q (rn-1 – qn-1 )]n-1 = [r(rn-1 – qn-1 )]n-1
When  n= 4, r=5,q=4 ; 614  + 2443  = 3053
When n=5 ,r=4 ,q=2;  2405 + 4804  = 9604
If  b2/a2  =  p/αn+1 then  c2 /a2  = [ 1 + p/αn+1] = βn
p = αn+1n – 1], we get multi-power relation with exponents [n,n+1,n)
when  n = 3, α = 2,β = 3; p = 416 and 4163 + 2084  = 12483
when  n = 3 α = 1,β =2; p = 7 and  73 + 74  = 143
when n = 4 ,  α = 2,β =3; p =2560  and 25604  + 12805 = 76804

Thursday, March 15, 2018

extraordinary properties of products of any four successive numbers


The extraordinary properties of products of four successive numbers
The product of any four successive numbers with any given difference d  has some peculiar properties
d = 1
1x 2 x 3 x 4 = 24 + 1 = 25 = 52
 2 x 3 x 4 x 5 = 120 + 1 = 121 = 112
 3 x 4 x 5 x 6 = 360 + 1 = 361 = 192
  4 x 5 x 6 x 7 = 840 + 1 = 841 = 292
  5 x6 x7 x8 = 1680 + 1 = 1681 = 412

d=2
1 x 3 x 5 x7 = 105 + 16 = 121 = 112
2 x 4 x 6 x8 = 384 + 16 =  400 = 202
3 x 5 x7 x9 = 945 + 16 = 961 = 312
4 x 6 x 8 x10 = 1920 + 16 = 1936 = 442
5 x7 x9 x11 = 3465 + 16 = 3481 = 592

d = 3
1 x 4 x7 x 10 = 280 + 81 = 192
2 x 5 x 8 x11 = 880 + 81 = 312
3 x 6 x9 x12 = 1944 + 81 = 452
4 x7 x 10 x 13 = 3640 + 81 = 612
5 x 8 x 11 x 14 = 6160 + 81 = 792
The square root number is found to be the mean of  products of extreme numbers  a (n+3d) and middle numbers  (n +d ) (n + 2d) and is equal to (n2 + 3nd + d2)2 The number added with the product of four successive numbers is equal to d4..  It gives the following algebraic relation.
n (n+d) (n+2d) (n+3d) + d4  =  (n2 + 3nd + d2)2