Monday, March 26, 2018

Beal's conjecture


Link between  Pythagoras’  and  Beal’s  equation
It is found that there is a definite correspondence between the Pythagoras’  equation and Beal’s equation .
Let a2 + b2 = c2   be a known Pythagoras’ equation. With simple mathematical manipulation, it can be converted  into a  multi-power relation  px  + qy  = rz  which reveals  the basic characteristics of Beal’s conjecture. It states that if p,q,r,x,y and z are positive integers with (x,y,z) > 2 then p,q,and r have a common prime factor.
The conversion of a Pythagoras’ equation into a Beal’s equation can be done with fundamentals of Algebra . It is exemplified as follows.
a2 + b2 = c2  à  1 + (b2/a2) = (c2/a2)
Multiply by pn à pn  + pn (b2/a2) = pn(c2/a2)
If b2/a2 = qn then c2/a2 = qn  + 1 . If p = qn  + 1 we get multi-power relation with exponents [n,n,n+1]
(qn +1)n  + [q(qn + 1)]n  = (qn + 1)n+1
n=2, q =2 gives  52 + 102  = 53
n=3,q=2 gives  93  + 183  = 94
n=3 , q=3 gives  283  + 843 = 284
if b2/a2  = qn-m/p then c2/a2 = [ 1 + qn-m/p]
pn  + (pq)n-1    = pn-1 [p + q n-1] = (pr)n-1  where p = rn-1 – qn-1, we get multi-power relation with exponents [n,n-1,n-1]
(rn-1 – qn-1 )n  +  [q (rn-1 – qn-1 )]n-1 = [r(rn-1 – qn-1 )]n-1
When  n= 4, r=5,q=4 ; 614  + 2443  = 3053
When n=5 ,r=4 ,q=2;  2405 + 4804  = 9604
If  b2/a2  =  p/αn+1 then  c2 /a2  = [ 1 + p/αn+1] = βn
p = αn+1n – 1], we get multi-power relation with exponents [n,n+1,n)
when  n = 3, α = 2,β = 3; p = 416 and 4163 + 2084  = 12483
when  n = 3 α = 1,β =2; p = 7 and  73 + 74  = 143
when n = 4 ,  α = 2,β =3; p =2560  and 25604  + 12805 = 76804

No comments:

Post a Comment