Thursday, May 16, 2024

 2. If a + b = x + y  then ab ≠ xy. If ab  ≠ xy which is smaller ?  what will be its difference ?

 If the two numbers in the pair are widely separated, its product will be smaller.  e.g., in 7+11 = 5 +13 , 5 and 13 are widely separated than 7 and 11,  hence  the product 5 x 13 = 65 is smaller than the product 7 x 11= 77. 

Let a + b = x+y = 2k

a = (k-n) and b = (k+n) , ab = k2 – n2

x = (k+m) and y = (k-m), xy = k2 -  m2 

which shows that n= {(b-a)/2] and m = [(x-y)/2]

(a+b)2  =  (x+y)2

 

a2 + b2 + 2ab =  x2  + y2  + 2xy

(k-n)2  + (k+n)2  + 2ab = (k +m)2  + (k – m)2  + 2xy

 

2(k2 + n2 ) + 2ab =  2(k2 + m2 ) + 2xy

Or ab – xy = m2  -  n2  = [(x-y)/2]2 – [(b-a)/2]2

No comments:

Post a Comment