Thursday, December 30, 2010

Fun with mathematics-8

Perfect numbers

Perfect numbers are closely related to Mersenne primes. The Greek mathematician Euclid
pointed out that when 2n-1 is a prime, then  2n-1 (2n – 1) becomes a perfect number.
It means that Mersenne prime is a factor to its corresponding perfect number.
                                   
       Table.11.Mersenne prime and perfect number
      ___________________________________________________________
        Prime              2p – 1                        2p-1(2p – 1)                  factors
       Number p      Mersenne prime            perfect number
     ___________________________________________________________                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              2                 3                                        6                            3 X 2
            3                 7                                     28                            7 X 4
            5                 31                                  496                          31 X 16
            7                 127                              8128                        127 X 64
            13               8191                    33550336                      8191 X 4096
            17               131071            8589869056                  131071 X 65536
            19               524287        137438691328                  524287 X 262144    
            31           2147483647    2305843008139952128       .........................
             ________________________________________________________________

The 24 th Mersenne prime is 2^19937 – 1 and the perfect number associated with this is
 2^19936 (2^19937 – 1) This is one of  the largest perfect numbers. It has 12,003 digits and begins and ends with 931,144.... 942,656 respectively and found by Bryant Tuckerman in 1971.
Perfect number is a number which can be expressed as the sum of its all divisors except that
number itself. For example, 6,28,496,8128,33550336 .... are first few perfect numbers.
It can be shown that they are all equal to sum of their divisors.

                                                6 = 1 + 2 + 3
                                                28 = 1 + 2 +4 + 7 +14
                                                496 = 1 + 2 + 4 + 8 +16 + 31  +62+ 124 + 248
                                                8128 = 1+2+4+8+16+32+64+127+508+1016+2032+4064
                                                33550336 = 1+2+4+8+16+32+64+128+256+512+1024+2048+4096+
                                                                        8191+16382+32764+131056+262112+524224+
                                                                        1048448+20966896+4193792+8387584+16775168

The first 30 perfect numbers are given in Table.12.


                                                    Table.12. First 30 perfect numbers
                                                                       
__________________________________________________________________________No        Perfect number                                                                        number of                                                                                                                         digits                                                                                                 
___________________________________________________________________________
                        1          21(22 – 1)    = 6                                                                        1
                        2          22(23 – 1)    = 28                                                                      2                                                             3          24(25 - 1)     = 496                                                                   3
                        4          26(27 – 1)    = 8128                                                                  4
                        5          212(213 - 1)  =  33,550,336                                                       8
                        6          216(217 – 1)  = 8,589,869,056                                                  10
                        7          218(219 - 1)  = 137,438,691,328                                               12
                        8          230(231 – 1) = 2,305,843,008,139,952,128                              19
                        9          260(261 – 1)                                                                               37
                        10        288(289 –  1)                                                                               54
                        11        2106(2107 – 1)                                                                            65
                        12        2126( 2127 – 1)                                                                           77
                        13        2520 (2521 – 1)                                                                           314
                        14 .   2606(2607 – 1 )                                                                              366
                        15.    21278(21279 – 1)                                                                             770
                        16.    22202 (22203 – 1)                                                                            1327
                        17 .   22280(22281 – l)                                                                              1373
                        18.    23216(23217 – 1)                                                                             1937
                        19.    24252(24253 – 1)                                                                             2561
                        20.    24422(24423 – 1)                                                                             2663
                        21.     29688(29689 – 1)                                                                            5834
                        22.     29940(29941 – 1)                                                                            5985
                        23.     211212(211213 – 1)                                                                         6751
                        24.     219936(219937 – 1)                                                                         12003
                        25.     221700(221701 – 1)                                                                         13006
                        26.     223208(223209 – 1)                                                                         13973
                        27.     244496(244497 – 1)                                                                         26790
                        28.     286242 (286243-  1)                                                                         51924
                        29.     2132048(2132049 – 1)                                                                       79502
                        30.     2216090(2216091 – 1)                                                                       130100
                        _____________________________________________________________________

----------------------------------------------------------------------------------------------------------------

Mersenne prime and perfect number from chess board

Mersenne primes and perfect numbers can be easily generated on our chess board. Once upon a Time, a chess competition between an Indian king and a farmer was conducted. The condition was, if the king wins, the farmer will be beheaded, and if the king is defeated, he has to pay some amount of grains, which the farmer wanted. The quantity of grains must be estimated according to 1 grain in the first square, 2 in the second, 4 in the third, 16 in the fourth, 256 in the fifth and so on. At the end of the game, the king was defeated. When he tried to pay the grains, he actually felt that even the total grains preserved in his whole kingdom could not fulfil the farmer’s condition.
To obtain a Mersenne prime from the chess board, remove one grain from the grains on a square and check if the number of the remaining gains is a prime. If it is, then it is a Mersenne prime .Also the product of the number of grains in this square and that of those in the previous square will give a perfect number.
----------------------------------------------------------------------------------------------------------------

Some properties of perfect numbers

The perfect numbers have some common properties. They are

1. All known perfect numbers are even. No odd perfect numbers have been
identified. Thus all perfect numbers are divisible by 2. A number to be even,
it should end with 2,4,6,8 or 0. However, all perfect numbers end only with
either 6 or 8. They do not end with 0 or 2 or 4.

2. The factors of a perfect number will not be in natural series. But a perfect
number can be expressed as a sum of all the successive numbers from 1 up
to a prime factor of the perfect number. e.g.,
                                     6 = 1 + 2 + 3                                =   (3x4)/2
                                     28 = 1 + 2+ 3 + 4 + 5+6 + 7          =  (7x8)/2
                                     496 = 1 + 2 +3 + 4 + 5+....... + 31   =  (31x32)/2
                                     8128 = 1 + 2 +3 + 4 + 5+ ..... + 127  =  (127 x128)/2

3. The square of a number which is equal to a sum of all number up to a number
in the natural series, can be expressed as the sum of cube of numbers in natural series .
e.g.,

                        62         =    13   +  23 +  33
                        282       =    13   +  23 +  33  +  43 +  53 +  63   +  73
                        4962     =    13   +  23 +  33  +  43 +  53 + .....  +  313
                        81282   =    13   +  23 +  33 +  43  +  53 + .....   + 1273

4. All perfect numbers except 6 can be represented as a sum of cube of
successive odd numbers in the natural series from 1 ,e.g.,

               28 =  13  + 33    =  4   x 7 =  22 x  7 ;  (1 + 3 = 4)
                       
             496 =  13  + 33  + 53 + 73 = 16 x 31 = 24 x 31  ; (1+3+5+7= 16)
        
           8128 =  13  + 33 + 53 + 73  + 93  + 113 + 133 + 153  = 64 x 127
                                                = 26 x 127 ;
                                                 (1+3+5+7+9+11+13+15 = 64)

5. Perfect numbers can also be expressed as a sum of successive powers of 2 e.g.,
                                                            6 = 21 +  22
                                                          28 = 22 + 23 +  24
                                                        496 = 24 + 25 + 26 + 27  + 2 8
                                                      8128 = 26 + 27 + 28 + 29 + 210 + 211 + 212
6. Except 6, all other perfect numbers have its digital root l. The digital root of a
number is a single digit number obtained by summing up all of the digits of the number. e.g.,

                                                            28 ; 2+8 = 10  ; 1
                                                            496; 4 + 9 +6 = 19 ; 1+9 = 10 ; 1
                                                            8128; 8+1+2+8 = 19 ; 1+9 = 10 ; 1

7. Reciprocals of the divisors of a perfect number including the number itself always add up to 2 e.g.,

                                                                 6 ; (l/1) + (1/2) + (1/3) + (1/6)  =  2
                                                28 ; (1/1) +(1/2)+(1/4) + (1/7) +(1/14)+(1/28) = 2

8.A perfect symmetry is observed among the divisors of the perfect numbers. Few
 simple perfect numbers and their divisors are listed below.

6   :  1,2,(22 – 1)
28   :  1,2,22, (23 – 1), 2(23 – 1)
496  : 1,2,22,23,24, (25 – 1),2(25 - 1), 22 (25 – 1),23(25 – 1)
8128 : 1,2,22,23,24,25,26, (27 –l),2(27 – 1),22(27 –l),23(27 –l),24(27 -1),25(27 – 1)

From this we understand that the first four perfect numbers 6,28,496 and 8128
are related To the prime numbers 2,3,5 and 7 respectively. According to this
correlation, if p is a prime number, then its related perfect number will have
factors 1,2,22,23,....... 2p-1,(2p – 1),2(2p – 1),22(2p -1)..................2p-2(2p – 1).

9. All perfect numbers end with either 6 or 8 and no perfect number is odd.
This can be established mathematically. If the perfect number is odd, it will
not have any single even factor, because the product of such factor with other
 factors, whatever they may be will result with even number. Hence odd
perfect number, if exists will not have even factors at all. The factors of a number
can be paired up. When the number is divided by one of its factors in a pair, the
other factor of the pair will result. If 1 is a factor, then its pairing factor will be
 the number itself .Let us suppose that an odd perfect number has a pair of factors
a and b. Then
                                                              P = a x b = 1 x P

Where P denotes odd perfect number and a and b are odd factors. But as per
definition P must be equal to the sum of all of its factors except P

                                                       P = 1 + a + b = 1 + a + P/a

Which gives P = a(a+1)/(a-1) and b = (a+1)/(a-1). For all possible odd values
of a, b cannot be odd and integer. It implies that odd perfect number is not
possible. 10.An even perfect number p  can be related directly to its corresponding
Mersenne prime M = 2p - 1.
                                                      
p = (½)(M)(M+1)

11.The number digit of a prime number can be a perfect number. The least prime
number whose number digit is a perfect number 28 is 1999.

                                                1+9+9+9 = 28 = 1+2+4+7+14
It is noted that there is no prime numbers whose sum of digits is equal to 6.Because
it will be divisible by 3 and hence it cannot be prime in nature. The least prime whose
 number digit is the next perfect number 496 is

  2 999 999 999 999 999 999 999 9 8 999 999 999 999 999 999 999 999 999 999 99
                                          2(22 nines) 8 (32 nines)

It is a challenging entertainment to find primes whose number digit is a perfect number.
In fact there are quite a lot of such primes. If we restrict ourselves with multi-digit
primes using only two digits, the challenge becomes more thrilling. Few examples for
the perfect number 28 are
                                                1181881  2222929   338383
                                                1881181  2922229   383833
                                                1881811
                                                8118181
                                                8188111








Monday, December 27, 2010

Fun with Mathematics

              Prime numbers from Pythagorean triples
We know every odd number can be a number of Pythagorean triple. Few Pythagorean triples for odd numbers from 3 in the natural series are
                                                                   3     4       5
                                                                   5   12     13
                                                                   7   24     25
                                                                   9   40     41
                                                                 11   60     61 
                                                                 13   84     85
                                                                 15  112  113

All the edge numbers (smallest and biggest) are odd while the central numbers are all even. The general form of this series of Pythagorean triple is [ (2n+1), 4Σn , 1 + 4 Σ n ]

Now take a central number from any one of the Pythagorean triple (say y’) in (x,y,z).Starting with y, generate an arithmetic progression with the smallest number x as the common difference. It will be in the form of (y + nx) where n = 1,2,3,4,..... Few such series are given in Table.1.

                     Table.1. Pythagorean triples and its arithmetic progressions
            __________________________________________________________
                               Pythagorean triple          general form            series
              _________________________________________________________
                        (3,4,5)                           (4 + 3n)               4,7,10,13,16,19,22........
                        (5,12,13)                      (12 + 5n)            12,17,22,27,32,37,42,....
                        (7,24,25)                      (24 + 7n)            24,31,38,45,52,59,66.....
                        (9,40,41)                      (40 +9n)            40,49,58,67,76,85,94,....
                        (11,60,61)                    (60+11n)            60,71,82,93,104,...........
                        (13,84,85)                    (84 +13n)           84,97,110,123,.............
            ___________________________________________________________

Since there are infinite odd numbers, there will be infinite Pythagorean triples and hence infinite such series. It is noted that some numbers may be existing in two or more series (for example, in the first two series 22 is found to be common),while some other numbers may not be found at all in any one of the series. If N is such a missing number, then it generates the prime by (2N +1). For example, below 50, the missing numbers are 1,2,3,5,6,8,9,11,14,15,18,20,21,23,26,29,30,33,35,36,39,41,44,48........ They produce all the prime numbers from 3 up to 97.

 With the general form of Pythagorean triple, we can express the series as
                                             
                                                   4Σ m + (2n +l) n       

Where m =1,2,3,4..... and n = 0,1,2,3,...... Hence all the numbers in all the series can be represented simply by 2m (m+n+1) + n. Thus the numbers that cannot be derived by varying m and n values give prime numbers on addition of 1 with twice of them.

Let N be a number in the series, then N = 2 m(m+n+1) + n ,where m = l,2,3,4... and n = 0,1,2,3,... The values of N are quantized. The forbidden values can be determined that fall in the gap between the two successive allowed values. Table.2 exemplifies this feature.

                           Table.2. Missing values of the series and prime numbers
            ______________________________________________________________
                    m             n                   N(allowed)           N(forbidden)             prime
            _______________________________________________________________
      
                    1               0                         4                        1,2,3                        3,5,7
                    1               1                         7                          5,6                        11,13
                    1               2                       10                          8,9                         17,19
                    2               0                       12                           11                            23
                    1               3                       13                          .....                          .....
                    1               4                       16                        14,15                       29,31
                    2               1                       17                         ......                          .....
                    1               5                       19                           18                          37
                    2               2                       22                        20,21                      41,43
            ________________________________________________________________