Saturday, December 11, 2010

Fun with Mathematics

Fun with Mathematics-2
The product with all identical digits

According to the divisibility rule, a number N is divisible by 3,
if the sum of all the digits of N is divisible by 3. Hence the
number with treble, six, nine or twelve 1’s will be divisible by 3.
Making use of this fact, one can create products with all identical
digit 1.
                                    37 x 3 = 111
                            37 0 37 x 3 = 111 111
                    37 0 37 0 37 x 3 = 111 111 111
            37 0 37 0 37 0 37 x 3 = 111 111 111 111

Since 111 x n = nnn ,we have 37 x 3 x n = nnn, where n is a
single digit number. This n may be combined with the multiplier
or with the multiplicand and as a consequence of which, the
product with all identical digit can be represented in different ways.
          
           37 x 6 = 222          74 x 3 = 222
           37 x 9 = 333        111 x 3 = 333
           37 x 12 = 444      148 x 3 = 444
           37 x 15 = 555      185 x 3 = 555
           37 x 18 = 666      222 x 3 = 666
           37 x 21 = 777      259 x 3 = 777
           37 x 24 = 888      296 x 3 = 888
           37 x 27 = 999      333 x 3 = 999

For numbers having 4,6,8,…….2n (where n ≥ 2) identical digits,
a number with the same two identical digits will be a common
factor. That is 11 is a common factor for 1111,111111 and so on.
                                 1 x 11 = 11
                           1 0 1 x 11 = 11 11
                         10101 x 11 = 11 11 11
                     1010101 x 11 = 11 11 11 11

For every annexes of 10 in the left or 01 in the right of the
multiplicand, one block number of 11 is added in the product.
To produce products with any required identical digits, we have
                          101 x 11 x n = nnnn
As n may be combined either with the multiplicand or with the
multiplier
                        101 x nn = n0n x 11 = nnnn
 Similarly for the numbers having 6,9,…. 3n (where n ≥ 2)
identical digits, a number with the same three identical digits
will be a common factor. That is 111 is a common factor for 111,111; 111,111,111;   and so on.
                       1001 x 111 = 111 111
                100 1001 x 111 = 111 111 111
         100 100 1001 x 111 = 111 111 111 111

Following a similar procedure, it can be shown as,
                          1 x 1111 = 1111
                 1000 1 x 1111 = 1111 1111
        1000 1000 1 x 1111 = 1111 1111 1111
 and
                          1 x 11111 = 11111
               10000 1 x 11111 = 11111 11111
    10000 10000 1 x 11111 = 11111 11111 11111
41 and 271 are the two prime factors to 11111
                        41 x 271 = 11111
By suitably introducing intermediate zeros either with the
multiplicand or with the multiplier, the block number 11111
can be increased.
                       41 000 41 x 271 = 11111 11111
                       41 x 271 00 271 = 11111 11111

111 111 has many factors and hence it can be expressed
as a product of two numbers by many ways.
15873 x 7       ]
10101 x 11     ]
8547   x 13     ]
5291   x 21     ]
3367   x 33     ]
3003   x 37     ]
2849   x 39     ]       = 111 111
1443   x 77     ]
1221   x 91     ]
1001   x 111   ]
777     x 143   ]
429     x 259   ]
273     x 407   ]
231     x 481   ]
 The number with seven successive 1’s can be expressed
  239 x 4649 = 1 111 111
The number 1111 1111 has many factors and hence it
can be expressed by many ways as the product of its two factors.
1010101 x 11      ]
152207   x 73      ]
110011   x 101    ]
81103     x 137    ] = 1111 1111
13837     x 803    ]
7373       x 1507  ]
1111       x 10001]
 In the case of nine successive 1’s,

37037037  x 3     ]
12345679  x 9     ]
3003003    x 37   ]  = 111 111 111
1001001    x 111 ]
333667      x 333 ]


 

No comments:

Post a Comment