Wednesday, December 22, 2010

Fun with mathematics-6

SOME UNRESOLVED PROPERTIES OF PRIME NUMBERS
The field of prime numbers is so vast and its content is ever increasing with unresolved properties of them. Some of them are illustrated here.


1. Every positive integer can be expressed as a product of primes .The factorisation is unique except for a rearrangement of the factors. If the positive integer assumed is prime, it can be shown as a product of the prime and 1. (If number 1 is not taken in the list of prime numbers, then all the prime numbers cannot be expressed as the product of primes as shown for composite numbers).Few examples are given below

                                                33  =  3  x  11
                                                63  =  3  x  37
                                              132  =  2  x  2 x  3  x  11
                                              210  =  2  x  3  x  5  x  7
                                              222  =  2  x  3  x  37
                                              265  =  5  x  53


Christian Goldbach, the Prussian mathematician pointed out that every even number greater than 2 is a sum of two primes.

                                                4 = 1 +  3           18 =  7 + 11
                                                6 = 1 +  5           20 =  7 + 13
                                                8 = 1 +  7           22 =  5  + 17
                                              10 = 3 +  7           24 =  5 + 19
                                              12 = 5 +  7           26 =  3 + 23
                                              14 = 7 +  7           28 =  5 + 23
                                              16 = 5 + 11          30 =  1 + 29


Number theorists have verified Goldbach’s conjecture for all even numbers up to 108, but without proof. However, it paves a way to know other unresolved properties of primes. Every odd integer greater than 7 can be shown as a sum of three odd primes, by many ways.


                                                11 = 1+3+7   =  3+3+5  =  1+5+5
                                                13 = 3+3+7   = 1+5+ 7  = 3+5+ 5
                                                17 = 3+7+7   = 1+5+11 = 3 +7 +7
                                                19 = 5+7+7   = 3+5+11 = 3+3+13     



2. Most of the prime numbers can be expressed as a sum of a prime and twice a square number. e.g.,

                                                           11 =  3 + 2 x 22  =  3 + 23
                                                                               13 =  5 + 2 x 22  =  5 + 23
                                                                               17 = .............  .   =  1 + 24
                                                           19 = 11+ 2 x 22   =  3 + 24
                                                           23 =   5+ 2 x 32  =  7 + 24        
                                                           29 = 11+ 2 x 32  = 13 + 24
                                                           31 = 13+ 2 x 32   = 23 + 23
                                                                              37 = 19+ 2 x 32   =   5 + 25

3. There exists at least one prime number between consecutive triangular or square numbers. Triangular numbers are the numbers obtained by summing up all the numbers in natural series up to a number. First few triangular numbers are 1,3,6,10,15,21,28,36,45,55,66,78,91,105,120........ Similarly the first few square numbers are 1,4,9,16,25,36,49,64,81,100,...... One can check and confirm the captivity of prime or primes between any two successive triangular or square numbers.
4. We have already come across the Euclidian concept on infinite prime numbers. Even though it is unique and rigid, it is not possible to find all the primes with the help of this method.
The resultant of the product of successive primes is even by the presence of 2. The oddness of the generated prime is provided by the subsequent addition of 1. In contrary, if this 1 is subtracted from  the product of primes, it will not generate higher prime. For example,
                                    2 x 3 x 5 x 7 – 1 = 209 = 19 x 11
One can add or delete one or more primes in the product of primes, even then higher prime numbers are generated on addition of 1, but not always (remember the presence of 2 in the product is necessary, it cannot be deleted ). It is illustrated below:
                        Valid delete :    2 x 3 x  7 + 1 =    43 (5 is deleted)
                                                2 x 5 x   7 + 1 =    71 (3 is deleted)
                                                2 x 3 x 17 + 1 =  103 ( 17 is added)
                                                2 x 3 x 43 + 1 =1807 ( 43 is added)

                        Invalid delete:   2 x 3 x 19 + 1 = 115 = 5 x 23
                                                2 x 3 x 29 + 1 = 175 = 5 x 5 x7
                                                2 x 3 x  13 x 5 + 1 = 391 = 17 x 23
                                                2 x 3 x  17 x 5 + 1 = 511 = 7 x 73


5. Ramanujan discovered that the product of consecutive primes starting from 2 up to some prime numbers starting from 2 up to some prime numbers, when added with ¼ gives a square of a mixed fraction, the fractional part being ½. For example,

2 + ¼ = 2 ¼   = (1 ½)2  = 1 x 2 + ¼
2 x 3 + ¼ = 6 ¼ = (2 ½ )2 = 2 x 3 + ¼
2 x 3 x 5 + ¼  = 30 ¼  = (5 ½ )2 = 5 x 6 + ¼
2 x 3 x 5 x 7 + ¼  = 210 ¼ = (14 ½ )2  = 14 x 15 + ¼
2 x 3 x 5 x 7 x 11 + ¼ = 2310 ¼ = ......... = ............
2 x 3 x 5 x 7 x 11 x 13 + ¼= 30030 ¼ = ........ = ............

2310 ¼  and 30030 ¼  cannot be expressed as squares of a mixed fraction. This is because, the numbers 2310 and 30030 cannot be expressed as the product of two successive numbers in the natural series. This can be clearly understood with the following delightful pattern among the square of mixed fractions.
                                         
                                                1.5 x 1.5  = 2.25 = 1 x 2 + 0.25
                                                2.5 x 2.5  = 6.25 = 2 x 3 + 0.25
                                                3.5 x 3.5 = 12.25 = 3 x 4 + 0.25
                                                4.5 x 4.5 = 20.25 = 4 x 5 + 0.25
                                                5.5 x 5.5 = 30.25 = 5 x 6 + 0.25
                                                6.5 x 6.5 = 42.25 = 6 x 7 + 0.25

The divisors of 2310 are 1, 2 ,3, 5, 7 and 11. Hence 2310 can be expressed as the product of 42 x 55 or 77 x 30, but cannot be expressed as the product of any two successive numbers in the natural series, which shows that 2310 ¼  cannot be represented as a square of a mixed fraction ,the fractional part being ½ .
                                               
2x3x5x7x11x13x17 = 510510

510510 can be expressed as the product of two consecutive numbers,

                                                510510 = 714 x 715
Hence
                                                510510 ½  = ( 714 ½ )2
But 2x3x5x7x11x13x17x19= 9,699,690, where 9699690 ¼ cannot be expressed as a square of mixed fraction.
6. In 1963, Stanislaw-Ulam, the Polish-American science fiction writer found a peculiar pattern in the distribution of prime numbers. When natural numbers from 1 are written in the form of an expanding square spiral, a large number of primes fall on the diagonal. Its density is appreciably less towards the edges. Many primes also fall either in the ascending or in the descending diagonally horizontal or vertical lines. (Fig.1)


                                                37     36     35     34     33     32     31
                                                38     17     16     15     14     13     30
                                                39     18       5       4        3     12     29
                                                40     19       6       1        2     11     28
                                                41      20      7       8        9     10     27
                                                42      21    22     23     24      25    26
                                                43     44     45     46     47     48     49 ......                              

                                                     
Fig.1. Square
spiral from 1


The distribution of prime numbers in the diagonal of square spiral can be expressed in a quadratic form, which resembles the polynomials. For example, when we start from 1, the sequence of prime numbers 7,23,47,79.....  that fall in one of the descending diagonals, can be obtained by substituting values of x in the relation 4x2 + 4x – 1.The Spiral that starts from 41 reveals Euler’s formula   

                                                                       x2 + x +41.

                        105      104       103        102         101         100           99           98           97

                        106        77         76          75          74            73           72           71           96

                        107        78          57         56          55            54            53           70           95

                        108        79          58         45          44            43            52           69           94

                        109        80          59         46          41            42            51           68           93

                        110        81          60         47          48            49            50           67           92          

                        111        82          61         62           63           64             65          66           91

                        112        83          84         85           86           87             88          89           90          

                        113      114        115        116        117         118           119        120         121

                                                           
Fig.2. Square
spiral from 41.

The prime numbers, 421,347,281,223,173,131 (not shown in Fig.2) and 97, 71, 53, 43, 41, 47, 61, 83, 113 (shown in Fig .2), 151,197,251,313,383 (not shown) that fall in the ascending main diagonal can be obtained by Euler’s formula.

No comments:

Post a Comment