Monday, January 10, 2011

Fun with mathematics-13

Proof-6

There is a wonderful proof for this theorem, based on the
characteristics of the odd and even cubes and its corresponding
cube roots. The cubes of a number is always in the form of
7p or 7p± 1
First few numbers whose cubes are in the form of 7p and  7p± 1
are tabulated below

          7p+1                 7p                 7p-1

         1,  2,  4            7,14,21        3,  5,  6
         8,  9,11          28,35,42      10,12,13
       15,16,18          49,56,63      17,19,20
       22,23,25          70,77,84      24,26,27 
       29,30,32          91,98,105    31,33,34
                                               
The general forms of cube roots under different categories are
      [ (1+7p’)                                    [(3+7p’)
        (2+7p’)            [7(p’+1)]          (5+7p’)
        (4+7p’)]                                    (6+7p’)]  
where p’ = 0,1,2,3…..
It implies some conditions for the choice of the root numbers
to form a cubical relation a^3+b^3 = c^3. The cubes of
a,b,c cannot be in the same form of 7p.Because the
cubical relation will then be reducible by 7.If they are all
either in the form 7p-1 or 7p+1 ,then the sticking number
-2 or +2 in one side cannot be equated with -1 or +1 in the
other side.

 If c^3 is in the form of 7p±1,then a^3 and b^3 must be in
the form  of 7p and 7p±1 respectively or vice-versa. If c^3
is in the form of 7p, then a^3 and b^3 must be in the form
of 7p+1 and 7p-1 respectively or vice-versa.
In all the cases, the condition becomes,
p(a) +p(b) = p(c)
i.e., the integral number of 7 in c^3 must be equal to the sum
of integral numbers of 7 in a^3 and b^3.
If the root number (a,b,c) is odd, p will be even  if its cube
is in the form of either 7p+1 or 7p-1,and p will be odd if its
cube is in the form of 7p.
If the root number is even, p will be odd if its cube is in the
form of 7p+1 or 7p-1, and p will be even  if the cube is in the
form of 7p.
It is found that the ending digit of p is also closely associated
with the ending digit of the root number . However it depends
upon the form of the cubes represented in terms of multiples of 7.
                               
Ending digit of p ____________________________________________      
                     Ending digit of the root number
form       0       1      2      3      4       5       6       7       8       9
7p+1       7      0       1     8      9       2        5      6        3      4
   7p        0      3       4     1      2       5        8      9        6      7
7p-1        3     6        7     4      5       8        1      2        9      0


The root number with a given ending digit whose cube is in
 a given form cannot have all possible values, but some
selective values which are repeating with a periodicity of 70.

Root number ending with
                         0       1       2       3       4       5        6       7       8       9
                       30       1      2      23       4     15      16     37       8       9
                       50     11    22      43     44     25      36     57     18     29
                       60     51    32      53     64     65      46     67     58     39
  7p+1           -------------------------------------------------------------
                      100    71    72      93     74     85      86   107     78     79
                      120    81    92    113   114     95    106   127     88     99
                      130  121   102   123   134   135    116   137   128   109
                        10    31      12      3     24       5        6     17     38     19
                        20    41      52    13     34      45     26     27     48     59
                        40    61      62    33     54      55     66     47     68     69
     7q-1        ------------------------------------------------------------------------------------------                        80  101      82    73     94      75     76     87   108     89
                        90  111    122    83   104    115     96     97   118   129
                      110  131    132  103   124    125   136   117   138   139
                        70    21      42    63     14      35     56       7     28     49
        7r            ------------------------------------------------------------------------------------------
                      140    91    112   133    84    105   126     77     98   119

The ideal mathematical relation, a^3 + b^3 = c^3 to be true,

1. If a^3 is in the form of 7p(a)+1 then b^3 must be in the form of 7p(b)-1  or vice-versa                    
    in order to keep c^3 to be in the form 7p 
2. If a and b are odd then c must be even. If all of them are even, it will be reducible
  And all of them cannot be odd  as the sum of two odd numbers cannot be odd.
3. Both a and b should always be less than c.
4. However the cubical relation satisfies a unique condition a+b = c+6m that is a+b >c.
5. Since the sum of two cubes is equal to a cube, the ending digits of the root numbers
   must have an inherent correlation.
 All these requirements are fulfilled for all choices of numbers to a,b and c..For example,
if a ends with 1 and b also ends with 1, then c will end with 8. The suitable number for a
whose cube  is in the form of 7p+1 are 1,11, and 51  ,These numbers are cyclically
varying after 70..Hence the general form of these numbers are (1+70p’).(11+70p’),
(51 + 70p’). The suitable number for b whose cube is in the form of 7p-1 are 31,41,
and 61 with general form (31+70p’ ),(41+70p’) and  (61+70p’).The even numbers
ending with 8 and divisible by 7 (as its cube is divisible by 7) take the general form
(28 +70p’).

The requirement (4) demands that
 a+b = c+ 6m
(10x +l) + (10y+1) = (10z+8) +6m  or 10(x+y) = 10z +6(m+1)
Or (m+1) must be in the form of 5k
 x+y = z +3k
The possible values of x and y  are (0,1 and 5), (3,4 and 6 ) respectively  with or
without adding some multiples of 7 with them.The corresponding possible values
 of z are 2,9,16……..In any case x and y cannot be greater than z. When we
apply all these conditions together, no set of allowed numbers will satisfy the
numeral relation.Hence we can conclude that this kind of relation is not at all
existing.
 


No comments:

Post a Comment