Monday, August 15, 2011

Fun with Mathematics

New correlations with Pythagorean triples

If (a,b,c) is a Pythagorean triples,then  a2 + b2  = c2  is uniquely true,
where c>a,c>b but c < a+b. Let a + b = c+k where k is an equalizer..

Property.1

 a+b= c+k
Squaring both sides, we have,
a2+b2 +2ab = c2 +k2+2ck
2(ab-ck) =k2
It shows that both a and b cannot be odd. If a and b are odd,
then c must be even since a2 + b2  = c2  and k must also be even
since a+b = c+k.  It says that k2   is even but k2 /2
must be odd in nature as ab-ck is odd which contradicts the
previous statement.
If a is odd and b is evedn then c must be odd as a2 + b2  = c   
and k must also be even as a+b= c+k. Since (ab-ck) is even it
can be equal with k 2 /2 with proper values of a,b and c

 Property-2

a+b= c+k
(ab-ck) = k2  /2   
Which necessitates ab>ck or ab/c >k
This can be rewritten as
k2  + 2ck – 2ab = 0
Solving the quadratic equation for the positive value of  k,
k  =  -c + √ c2    +2ab
or a+b = c+k = √ c2    +2ab   

 c2    +2ab   must be a square number

Property-3

a3    +b3  + 3ab(a+b) = c3 + k3   + 3ck(c+k)
3(a+b)[ab-ck]-k3 = c3 –a3- b3
Substituting the value for ab-ck = k2/2
c3 –a3- b3  =
 = 3k2 /2[a+b]-k3  = 3k2 /2(c+k)- k3   
On simplification we get
c3 –a3- b3  = k2/2 [3c+k]

k=a+b-c,hence
c3 –a3- b3  = k2  [c + (a+b)/2]
where  (a+b)/2  and c  are left and right mean values respectively
of the Pythagorean relation

Property-4

(a+b)4 = (c+k)4
  a4  + b4   + 4ab( a2  +  b2  )+6a2 b2   = c4   + k4  +4ck (c2  +k2 ) + 6c2 k2
c4  -a4-b4 =  4c2  (k2  /2) + 6 k2 /2 (ab+ck) – 4ck3 – k4


On simplification we have,
c4  -a4-b4 =    (k2  /2) (2c+k)2   = (k2  /2)(a+b+c)2
= [(a+b)2- c2]
   

No comments:

Post a Comment