Monday, March 27, 2023

 

 Find the sum of the given series  (1x2) + (2x3) + (3x4)……… [(n-1)n]  

       12  =  1

      22  =  2 + 1.2

    32  =  3  + 2.3

    42  = 4 + 3 x 4

    n2 = n + (n-1)n

Summing up all the equations, ( 12 + 22 + 32 + 42 ……. n2) =( 1 + 2 + 3 + 4 ……. n)+ [(1x2) + (2x3) + (3x4)……… [(n-1)n]

We know , ( 12 + 22 + 32 + 42 ……. n2) = n(n+1)(2n+1)/6

( 1 + 2 + 3 + 4 ……. n) = n(n+1)/2

Hence , [(1x2) + (2x3) + (3x4)……… [(n-1)n] = n(n+1)(2n+1)/6  - n(n+1)/2

On simplification it reduces to n(n2-1) /3

 

No comments:

Post a Comment