Find
the sum of the given series (1x2) +
(2x3) + (3x4)……… [(n-1)n]
12
= 1
22 = 2 +
1.2
32
=
3 + 2.3
42
= 4 + 3 x 4
n2
= n + (n-1)n
Summing up all the equations, ( 12 +
22 + 32 + 42 ……. n2) =( 1 +
2 + 3 + 4 ……. n)+ [(1x2) + (2x3) + (3x4)……… [(n-1)n]
We know , ( 12 + 22 + 32
+ 42 ……. n2) = n(n+1)(2n+1)/6
( 1 + 2 + 3 + 4 ……. n) = n(n+1)/2
Hence , [(1x2) + (2x3) + (3x4)……… [(n-1)n] = n(n+1)(2n+1)/6 - n(n+1)/2
On simplification it reduces to n(n2-1)
/3
No comments:
Post a Comment