Monday, March 27, 2023

 

The sum of series of successive cubes is equal to square of the sum of root numbers.

13 + 23 = 1+8 = 9 = 32 = (1+2)2

13 + 23  + 33 = 1+8 +27 = 36 =62 = (1+2 + 3)2

13 + 23  + 33 + 43= 1+8 +27 + 64 = 100 =102 = (1+2 + 3 + 4)2

13 + 23  + 33 + 43 …… n3 =  (1+2 + 3 + 4…… n )2 = [n(n+1)/2]2

This can be proved b considering this series as an arithmetic series with varying common difference.

If there are two terms 13 + 23  = 9 = 1 +(1+d1 ) = 1 + (1+d) or d = d1 = 7

With three terms 13 + 23  + 33 = 36 = 3 + d1 + d2 = 3 + (1+d) +(1+2d) = 3 + 3d

                               d1 + d2 = 33 ; d2 = 26 and d = 11 = 7 +4

With four terms  13 + 23  + 33 + 43 = 100 = 4+ d1 + d2 + d3 = 4 + 6d

                                d1 + d2 + d3  = 96 , d3 = 63 and d = 16 = 7 + 4 +5

The mean d varies as d = 7+  [(n+1)(n+2)/2 – 3x4/2] = 7 + [ (n2 +3n +2)/2 -6] = 1 +(n2 +3n +2)/2 = (n2 +3n +4)/2 where n ≥ 2

S3 = 13 + 23  + 33 + 43 …… (n-1)3  where  <d> =  (n2 +3n +4)/2

 

   = n [ 1 + (n-1)/2 d] = n { 1 + [(n-1)/2][ (n2 +3n +4)/2] = [n(n+1)/2]2

No comments:

Post a Comment