The sum of series of successive cubes is equal to square of
the sum of root numbers.
13 + 23 = 1+8 = 9 = 32 =
(1+2)2
13 + 23
+ 33 = 1+8 +27 = 36 =62 = (1+2 + 3)2
13 + 23
+ 33 + 43= 1+8 +27 + 64 = 100 =102 =
(1+2 + 3 + 4)2
13 + 23
+ 33 + 43 …… n3 = (1+2 + 3 + 4…… n )2 = [n(n+1)/2]2
This can be proved b considering this series as an
arithmetic series with varying common difference.
If there are two terms 13 + 23 = 9 = 1 +(1+d1 ) = 1 + (1+d)
or d = d1 = 7
With three terms 13 + 23 + 33 = 36 = 3 + d1
+ d2 = 3 + (1+d) +(1+2d) = 3 + 3d
d1 +
d2 = 33 ; d2 = 26 and d = 11 = 7 +4
With four terms 13
+ 23 + 33 + 43
= 100 = 4+ d1 + d2 + d3 = 4 + 6d
d1 +
d2 + d3 = 96 , d3 = 63 and d = 16 = 7 + 4
+5
The mean d varies as d = 7+ [(n+1)(n+2)/2 – 3x4/2] = 7 + [ (n2
+3n +2)/2 -6] = 1 +(n2 +3n +2)/2 = (n2 +3n +4)/2 where n ≥
2
S3 = 13 + 23 + 33 + 43 …… (n-1)3
where <d> =
(n2 +3n +4)/2
= n [ 1
+ (n-1)/2 d] = n { 1 + [(n-1)/2][ (n2 +3n +4)/2] = [n(n+1)/2]2
No comments:
Post a Comment