Thursday, March 9, 2023

 Knowing the Algebraic formulae

Algebra is a branch of mathematics in which all unknown quantities are expressed as abstract symbols rather than specific numbers. Algebra is the branch of mathematics that helps in the representation of problems or situations in the form of mathematical expressions. By analyzing the mathematical expression one can understand various dependency of various factors associated with the problem.  Algebra is helpful to develop skill in problem solving . There ar many Algebraic formulae  Let us try to learn these algebraic formulae from fundamental concepts in mathematics.

a2 – b2 = (a + b) (a - b)

Adding  and subtracting a common  term ab with a2 – b2,  we get

a2 + ab – ab - b2 where a is commen in the first two terms andb is common in the last two terms.

a(a+b) – b(a+b), where (a+b) is common in both the terms, It is simplified into (a+b)    (a-b)

(a + b)2 = a2 + 2ab + b2

(a+b)2  = (a+b) (a+b) = a2  + ab + ab + b2, = a2  + 2ab + b2,. It gives a supplementary formula  a2 + b2 = (a + b)2 – 2ab.

(a – b)2 = a2 – 2ab + b2

(a-b)2 = (a-b)(a-b) = a2  - ab - ab + b2, = a2  - 2ab + b2. It gives a supplementary formula  a2 + b2 = (a - b)2 + 2ab . It shows that (a-b)2 , (a2 + b2) , (a+b)2  are always in arithmetic progression with a common difference 2ab.

(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca.

(a+b+c) (a+b+c) = a2  ab + ac + ab + b2 + bc + ac + bc + c2 =  a2 + b2 + c2 + 2ab + 2bc + 2ca.

(a – b – c)2 = (a-b-c) (a-b-c) =  a2 + b2 + c2 – 2ab + 2bc – 2ca.

(a + b)3 = a3 + 3a2b + 3ab2 + b3 = a3 + b3 + 3ab (a + b)

(a+b)3  = (a+b) (a+b) (a+b) = (a2 +2ab + b2))(a+b) = (a3 + 2a2 b +ab2 ) + (a2b + 2ab2 + b3) = a3 + 3a2 b + 3ab2 + b3 . The middle two terms have a common factor 3ab which reduces the formula into (a + b)3  =  a3 + b3 + 3ab(a + b).It provides another supplementary formula a3 + b3  =(a + b)3  - 3ab(a+b). Since (a+b) is common it is changed into  a3 + b3  =(a + b)3  - 3ab(a+b) = (a+b) [(a+b)2 – 3ab] =(a+b)(a2 –ab + b2 ]

The same formula can be obtained directly from a3 + b3  by imply adding and subtracting  common and conjugate pairs a2b + ab2

a3 + b3 = a3 + a2b + b3 + b2a - a2b - ab2

The first two terms have a common factor a2, the middle two terms have a common factor b2, while the last two terms have a common factor ab..It reduces into

a2(a+b) + b2 (a+b) – ab(a+b) = (a+b) (a2 –ab + b2 )

(a – b)3 = a3 – 3a2b + 3ab2 – b= a3 – b3 – 3ab (a – b)

(a-b)3  = (a-b) (a-b) (a-b) = (a2 -2ab + b2))(a-b) = (a3 - 2a2 b +ab2 ) + (-a2b + 2ab2 - b3) = a3 - 3a2 b + 3ab2 - b3 . The middle two terms have a common factor 3ab which reduces the formula into (a - b)3  =  a3 - b3 - 3ab(a - b).It provides another supplementary formula a3 - b3  =(a - b)3 + 3ab(a-b). Since (a-b) is common it is changed into  a3 -  b3  =(a - b)3  -+ 3ab(a- b) = (a-b) [(a-b)2 + 3ab] =(a-b)(a2 + ab + b2 ]

The same formula can be obtained directly from a3 - b3  by imply adding and subtracting  common and conjugate pairs a2b + ab2

a3 - b3 = a3 - a2b - b3 + b2a + a2b - ab2

The first two terms have a common factor a2, the middle two terms have a common factor b2, while the last two terms have a common factor ab..It reduces into

a2(a-b) + b2 (a-b) –+ab(a-b) = (a-b) (a2 + ab + b2 )

By following  a similar procedure one can establish algebraic formula for an –  bn   where the exponent may have any integral value.. For example at first let us consider a4 – b4 ..In the first step add and subtract  ( a3 b – ab3) ,a conjugate pair with power 4

a4 – b4  = (a+b) ( a3 – a2b + ab2 – b3 )                                                                                             a4 – b4  = (a - b) ( a3 + a2b + ab2 + b3 )

a4 – b4  = a4 – b4   + ( a3 b – ab3) - ( a3 b – ab3)

            = a3 (a+b) – b3 (a+b)  - ( a3 b – ab3)  

In the second step add and subtract a2 b2  a conjugate pair  with power 4

a4 – b4  = a3 (a+b) – b3 (a+b)  - ( a3 b – ab3) - a2 b2  + a2 b2

           = a3 (a+b) – b3 (a+b) – a2b (a+ b) + ab2 (a+b)

(a+b) is common in all the terms which reduces the relation

       a4 – b4  = (a+b) ( a3 – a2b + ab2 – b3 )

a4 – b4   can be expressed in another way.In the first step subtract and add (-a3 b + ab3), the conjugate pair with power 4.

a4 – b4  = a4 – b4   + ( -a3 b + ab3) - (- a3 b + ab3)

            = a3 (a-b) + b3 (a-b)  + ( a3 b – ab3)

In the second step add and subtract a2 b2  a conjugate pair  with power 4

a4 – b4  = a3 (a-b) + b3 (a-b)  + ( a3 b – ab3) + a2 b2  - a2 b2

           = a3 (a-b) – b3 (a-b) +a2b (a- b) + ab2 (a-b)

(a - b) is common in all the terms which reduces the relation

       a4 – b4  = (a - b) ( a3 + a2b + ab2 + b3 )

This can be obtained directly  by factorizing the therm a4 – b4

 a 4 – b4 = (a2 + b2 )(a2 - b2) = (a2 + b2 )(a+b) (a-b)

a4 – b4 =  (a+b) [(a-b) (a2 + b2 )] = (a+b)( a3 –a2b + ab2 – b3 )

a4 – b4 =  (a-b) [(a+b) (a2 + b2 )] = (a-b)( a3 +a2b + ab2 + b3 )

In the same way one can prove

a5 – b5 = (a-b) (a4 + a3b + a2b2 + ab3 + b4)

a6   b6 = (a-b) (a5 + a4b + a3b2 + a2b3 + ab4 + b5)

If n is a natural number an– bn = (a-b) (an-1 + an-2b + an-3b2 + …… abn-2+  bn-1)

an – bn is divisible by (a-b) what ever may be the value of the exponent. If the exponent is even it is divisible by both (a-b) and (a+b).

an – bn  can also be expressed as a product with (a+b) for odd exponents. For example let us consider the case a5 – b5.. In the first stage add and subtract a conjugate pair  for 5 th power a5 – b5   = a5 – b5  + a4b – b4a  + ( - a4b + b4a) =a4(a+b) – b4 (a+b) – a4b + b4a. in the second stage add and subtract –a3 b2 + a2 b3    we get a5 – b5   = (a+b) (a4 – b4) – a3b (a+b) + ab3 (a+b)  + a3 b2 – a2 b3 = (a+b) (a4 – a3b +  a3b -  b4)  + a2 b2 (a-b)

a3 – b3 = (a+b) { a2 – b2) – ab(a-b)

a5 – b5   = (a+b) (a4 – a3b +  a3b -  b4)  + a2 b2 (a-b)

a7 – b7 = (a+b)( a6 – a5b + a4b2- a2b4 +a b5 – b6) – a3b3(a+b)

In general

a2n+1 – b2n +1 = (a+b) [a2n – a2n-1b + a2n-2 b2

                                    -b2n + b2n-1a – b2n-2 a2]  + (-1)n anbn (a-b)

if n is even (n = 2k), an + bn = (a + b)(an-1 – an-2b +…+ bn-2a – bn-1)

If n is odd (n = 2k + 1), an + bn = (a + b)(an-1 – an-2b +an-3b2…- bn-2a + bn-1)

(a + b + c + d)2 = a2 + b2 + c2 + d2 + 2ab + 2 ac + 2ad+2bc + 2bd + 2cd

(a + b + c + d)2 = [ (a+b) + (c+d)]2 = (a+b)2  + (c+d)2 + 2(a+b)(c+d)

                                                        = a2 + b2 + 2ab + c2 + d2 + 2cd + 2ac + 2ad + 2bc + 2bd

                                                       = a2 + b2 + c2 + d2 + 2ab + 2ac + 2ad + +2bc + 2bd +2cd

Solution of Quadratic equation

The general form of  a quadratic equation is ax² + bx + c = 0 ,where a,b,c are some coefficients, invariables, while x has certain specific values which satisfy the equation, called solutions or roots.

Determination of roots of the quadratic equation

Step-1 : Divide by a, the coefficient of x2 ;   x2 + (b/a) x = - c/a

Step-2 : Make the terms in LHS to be a square .For that  the coefficient of x = b/a is halved and then squared .It gives b2/4a2. And is added on both sides

     x2 + (b/a) x +  b2/4a2= - c/a + b2/4a2

       (x + b/2a)2 =  b2/4a2  - c/a

       (x + b/2a)  =  ±[ (b/2a) 2  - c/a]1/2

       x = [ -b  ± (b2 – 4ac)1/2 ]/2a

Sum of two roots

Let x1 and x2 be two roots that satisfy the   quadratic equation  ax2 + bx = -c

 ax1 2 + bx1 = -c and   ax2 2 + bx2 = -c

Subtracting one from the other

a( x22 – x12) + b(x2 – x1) = (x2 – x1) [ a(x2 + x1) + b] = 0

If the two roots are different  a(x2 + x1) + b = 0 or x1 + x2  = - b/a

Product of two roots

ax12 + bx1 = - c and   ax22 + bx2 = - c Adding together we

a( x22 + x12) + b(x2 + x1) = -2c.

 Adding 2x1 x2  both side and reduce the equation  to

a( x22 + x12)2 + b(x2 + x1) = -2c. +  2x1 x2

Substitute the value for sum of the two roots x2 + x1 = -b/a we have x1x2  = c/a

No comments:

Post a Comment